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Exercise 1. Let 2 < d <n—1. Compute the number of labeled trees with n vertices such that
each vertex has degree d or 1.

Solution. This corresponds to Prufer codes of length n — 2 in which every vertex appears 0 or
d — 1 times. If d — 1 divides n — 2 we have (";2);,2 such Prufer codes and ( o ) chaices for
((d=1)1) =1 -t
he vertices of degree d. The solution is therefore
(a22) —"Zy i (d—1)|(n —2)

number of labeled trees = a1’ ((d—1)!) d=1
0 else.
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Exercise 2. In this exercise we want to "draw graphs in one line without drawing an edge

twice”.

This means finding a path in the graph that contains every edge exactly once. The first

vertex of the path does not necessarily have to be the same as its last vertex.

(1)

Assuming you want to find such a path in the following graph, at which vertices can you
start? Justify your answer.

Solution. (1) We notice that there are two vertices of odd degree. These can not be in the

middle (i.e. not first or last vertex) of the path because with every time the path crosses
through a vertex we count +2 edges connected to this vertex. Since we have to cross all
edges exactly once this count will equal the degree of the vertex. We therefore have to
start /end at the two vertices with odd degree. In particular we can start at vertex 4 or
5. Indeed we can find such paths for vertex 4 and 5, namely (4,2,3,1,2,5,3,4,5) and
(5,3,2,1,3,4,2,5,4).

No. There are at least three vertices with an odd degree (for example vertex 1,2 and 3).
By the above argument these can not be in the middle of the path but we can only have
two vertices for start and end that can have odd degree. Contradiction.
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Exercise 3. Prove the inequalities

s (Ln%J) =2

Solution. We know that the (M??]) is the largest of the n + 1 binomial coefficient {(})}7_,-
Therefore, it is at least as big as the average of all the terms. That is

Y () 271 (1) =7

k=0

For the other inequality, we know that

<2> >, 0=z ()7

k is odd k is even

Since (My/lﬂ) must appear in one of the two sums, the sum will be less than the RHS.






8

Exercise 4. Consider the graph G shown below. Let n € Z>o and let A(n) be the number of
closed paths of length n in G, setting A(0) = 5.

(1) Show that the sequence (A(n))5, satisfies a linear recursion.

(2) Find the formula with its initializing values for A(n).
Facts from linear algebra: The trace of a matrix is the sum of its eigenvalues and the eigenvalues
are the zeros of the characteristic polynomial. Note that there is no need to compute the
eigenvalues.

Solution. (1) From the lecture we know that the number of closed paths of length n of a
matrix is the trace of the n-th power of the adjacency matrix
01 100
1 01 10
B=1110 01
01 001
00110

Furthermore we know that the trace is the sum of the eigenvalues of B, which are the
zeros of the characteristic polynomial 2° = bga* + b3a? + box? + bz + by denoted by
A1, ..., As. The eigenvalues of B"™ are A},..., Af. Then we have A(n) = Z?:1 A, Since
they are the zeros of the characteristic polynomial we can use the linear recurrence
theorem and obtain that

A(n +5) = bsA(n +4) + b3A(n + 3) + baA(n + 2) + b1 A(n+ 1) + boA(n)

and therefore satisfies a linear recurrence. Note that the linear recurrence theorem
also holds if the eigenvalues have higher multiplicity since we can choose the leading
coeflicients of the polynomials in the explicit expression of the sequence to be 0.

(2) The characteristic polynomial is det(B—xIds) = —2°+623+22%—4x. It has 5 eigenvalues
of multiplicity 1. The linear recurrence is

An+5) =6A(n+3) +24A(n+2) —4A(n+1)
which is the same as
An+4) =6A(n+2)+2A(n+1) —4A(n)

but starting from n = 1. For the starting conditions we can compute by hand (by
computing the traces of B, B, B2, B3, B%) that A(0) = 5, A(1) = 0, A(2) = 12, A(3) =
6, A(4) = 56.
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Exercise 5. We call a permutation (z1, ..., x9,) of the numbers 1, ..., 2n pleasant if |z;—x; 11| =
n for at least one i € {1,...,2n—1}. Prove that more than half of all permutations are pleasant
for each positive integer n.

Hint: This is a good time to recall the inclusion-exclusion principle and the inequalities that we
can derive from it.

Solution. Let A; be the set of permutations where k& and k + n are in neighbouring positions.
Therefore the set of all pleasant permutations is

We can count them by the inclusion exclusion principle.

(3) Al= > A&l — D0 JANAd+ D AN AN Ay — .

1<k<n 1<k<l<n 1<k<l<m<n
(4) > > A&l = DD AN A4y
1<k<n 1<k<I<n

To count |Ax| we note that the element k fixes the element k + n either in the position before
or after it. We therefore see them as a unit and count permutations of 2n — 1 elements. We
obtain |Ag| = 2(2n — 1)!I. To count |4; N Ag| we group k and k + n together and ! and [ + n
The case k = | + n can not arise because k < n. Therefore similar to the above we have
|A; N Ag| = 4(2n — 2)!. Therefore

|A] > (7;)2<2n —1)! - (Z) 4(2n — 2)! = 20! — (2n)(2n — 2)(2n — 2)! = (2n)!

!
(2n)! S
2n—-2 = 2

Noting that @ is half of all permutations we get the desired result
Remark: it also works with A; being the set of permutations with |x; — z;41| = n. In this
case one has to be careful about 7 = j &+ 1 when counting the size of intersections.
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Exercise 6. Let F;, be the Fibonacci numbers with F; = F5 = 1.

(1)

(2)

Show that for n > 2 we have
n—2
Fy, = 2F5, o+ ZFQZ' + 1.
i=1
Let n > 1. In the picture below you can see the so called fan graph for n + 1 vertices.
Show that it has Fb, spanning trees.

1 2 3 n-1 1

Solution. (1) We proceed by induction. For n = 2 we have 3 = Fy = 2F, +1 =2+ 1.

Assume now the claim is true for n. We then have for n + 1 that
n+1-—2 n+1—2

Fopyo = Fopy1 + Foyy = Fop + Fop1 + Fopo + Z Fo; +1=2F, + Z Fy +1
i—1

(2)

i=1

which proves the claim.
We would like to use the above equality. we proceed by complete induction. The base
case is given by n = 1 where we have 1 = F5, spanning trees. For the induction step
assume that the fan graph with n vertices has Fj(,_1) spanning trees. Then we count
spanning trees for the fan graph G with n 4 1 vertices in the following way: We identify
the graph with the vertices 1,...,n and the vertex n + 1 with the fan graph with n
vertices. For this part there are therefore Fy(, 1) spanning trees. Now a spanning tree
of G can either

e include the edge (n —1,n) and not (n,n + 1)

e not include the edge (n — 1,n) and include (n,n + 1)

e include the edge (n — 1,n) and (n,n+ 1)
In the first two cases we obtain respectively Fy(n — 1) spanning trees using the induction
hypothesis. In the third case we know that the spanning tree does not include the edge
(n—1,n+ 1) because spanning trees do not contain cycles. We can therefore delete the
vertex n and consider the edge (n + 1,n — 1) as given. To count spanning trees for this
graph we consider two cases. The spanning tree can either

e not include the edge (n — 1,n — 2)

e include the edge (n — 1,n — 2)
In the first case we have the number of spanning trees for a fan graph with n—1 vertices.
In the second case we can reduce our graph again by one vertex, namely n. At the end
of this procedure and using the equality from part (1) we obtain Fb, spanning trees for
the graph G.
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Exercise 7. Let 7, denote the number of distinct prime factors of the number n. Show that

> lu(d) =2

dln

Solution. Let n = p{'p5?...pro" be the prime decomposition of n. We have that

1if d = piyypiy -0, Tor {ig,d0,...,0} C
(5) |/,L(d)| — 1 ) pllplz p’Lk. or {7‘1 12 lk’} [TTL]

0 if p7 | d for some i € [ry,]
So we get that
(6) Dolu@) = 1=2"

dln IC[r]

To see the last equality note that we can either choose or not choose every element in [ry].
Therefore we have 2 possibilities for each of the r elements, which is in total 2".
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Exercise 8. In this exercise we consider permutations to be written as a product of disjoint
cycles, for example (132)(45).

Assume that the probability is uniform on S,. Compute the probability that a random
permutation in S, is a cycle of length n.

Solution. There are (n — 1)! ways to write a cycle of length n normalized to start with 1 such
that all these permutations are distinct. There are n! elements in S,,, therefore the probability
to have a permutation that is a cycle of length n is

(n—1)! 1

n! n’
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Exercise 9. Let R(r, s) be the Ramsey numbers. Show that for r, s > 2 the following inequality
holds:
R(r,s) < R(r—1,s)+ R(r,s — 1)

Solution. Consider a complete graph on R(r — 1,s) + R(r,s — 1) vertices whose edges are
coloured with two colours. Pick a vertex v from the graph, and partition the remaining vertices
into two sets M and N, such that for every vertex w, w is in M if edge (vw) is blue, and w is
in N if (vw) is red. Because the graph has R(r — 1,s) + R(r,s — 1) = |M| + |N| + 1 vertices,
it follows that either |M| > R(r —1,s) or [N| > R(r,s — 1). In the former case, if M has a red
K then so does the original graph and we are finished. Otherwise M has a blue K,_; and so
M U {v} has a blue K, by the definition of M. The latter case is analogous. Thus the claim is
true and we have completed the proof.
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Exercise 10. Assume that 8 friends who studied math together are on a canoe tour. They have
4 canoes (and therefore 2 people per canoe) and 7 days. Every morning they divide themselves
into 4 groups of 2 people, one group for each boat.

(1) Is it possible to order them such that after the 7 days every one was with every one in
a canoe?

(2) Is it always possible to find a combination like the above if they only think of this problem
on day 6, and didn’t pay attention to the combinations in the first 5 days (assuming
they did not already share a boat twice with the same person)?

Solution. (1) Yes, the following pairing works:

day 1: (12)(34)(56)(78)
day 2: (13)(24)(57)(68)
day 3: (14)(23)(58)(67)
day 4: (15)(26)(37)(48)
day 5: (16)(25)(38)(47)
day 6: (17)(28)(35)(46)
day 7: (18)(27)(36)(45)

A more systematic way is to put 1,2,3,4 on one side and 5,6,7,8 on the other one,
everything matched with the other side. Then it is 4 regular so one can find a perfect
matching for the first day and then delete that matching. Then its 3 regular and we
find another matching and with the same process one can find the first 4 days. Then we
can write 1,2 on one side and 3,4 on the other one, connect them and have something 2
regular, same for 5,6 and 7,8 and on the last day we put 12 34 56 78.

(2) It is not. Consider

day 1: (14)(25)(36)(78)
day 2: (15)(26)(37)(84)
day 3: (16)(27)(38)(45)
day 4: (17)(28)(34)(56)
day 5: (18)(24)(35)(67)

Now 1 still has to share a boat with 2 and 3, 2 has to share it with 1 and 3, 3 hast to
share it with 1 and 2. No matter which combination is choosen o day 6, the third person
will not have a partner on day 6.
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